Home Research Publications Contact


Relentlessly working toward a future with safe robots in every home, hospital, and spaceship.

Everyone has tasks which they would like an assistant to help them complete. For some, these may include "annoying" household chores like cleaning bathrooms; for others, physical handicaps make critical daily activities - such as putting on clothes - difficult. Robotics provides enticing solutions to improving quality of life in a wide range of applications, from personal experiences to increased office efficiency. My long-term vision is to contribute to this exciting, broad field in ways that will advance science and improve peoples' daily lives. I started with a four-year combined degree with a B.S. in Mechanical Engineering and M.S. in Agricultural engineering at Iowa State University, doing research in Agricultural Robotics. Currently I am with the Faboratory at Yale University and I'm a NASA Space Technology Research Fellow collaborating with the Intelligent Robotics Group at NASA Ames, tackling challenges in soft robotics, where I use flexible materials to enable new functionalities in robots. This page summarizes these activities; detailed information can be found in the included links.

Thanks for visiting!

- Dylan

Dylan Shah's Profile Photo


Soft Robots at Purdue Univeristy and Yale University

Aug 2016 - present

In Fall 2016, I joined the Faboratory at Purdue University with Prof. Rebecca Kramer-Bottiglio (Google Scholar), to work on soft robotics. This field aims to apply compliant materials to robots, enabling increased safety and improved dexterity. After my first year at Purdue, I moved with the lab to Yale University.

The projects I have worked on are oriented toward the goals outlined in my NASA fellowship proposal, and include other elements which broaden their application. These projects include:

See our website for more information on our current projects, even beyond those mentioned here. There's also a contact page where we are actively recruiting talented students.

OmniSkins Photo
Figure 1: Robotic Skins are planar sheets with integrated sensing and actuation. When applied to deformable bodies, a variety of motions and functions can be achieved, depending on the orientation of the skins.

Agricultural Robotics at Iowa State

May 2014 - Aug 2016

During my concurrent degrees at Iowa State University (B.S. Mechanical Engineering and M.S. Agricultural Engineering, with thesis) , I worked with Lie Tang on developing robotic systems and image-processing pipelines for data collection during the entire plant life-cycle. This data is useful for improving crop yield and studying the effects of various environmental parameters on plant health.

At first I assisted with data collection and mechanical design, culminating in my masters' project where I designed and programmed a few 4-wheeled robots for these applications. My role was to lead a small team (a few undergraduates and masters' students) to design and program robots to fulfill the goals of the broader projects. The most sophisticated one (prototype shown below in Figure 2), for the Enviratron project, was a mobile rover with a robot arm and a Kinect V2 3D camera for collision-free probing during use with researchers' specified instruments, such as a fluorometer.

Photo of the Enviratron Rover at Iowa State University
Figure 2: My research at Iowa State University included designing and programming the Enviratron rover for automated phenotyping of plants in multiple growth chambers.


Assembling an ideal team is essential to success. This section briefly lists undergraduate (and high school) students who made primary contributions to my projects.







Email: Dylan (dot) Shah @ Yale (dot) edu
Google Scholar